## 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

Wrong is right. Thelonious Monk

### 4.1 Three Definitions of Probability

Definition 1: Relative Frequency Approximation

$$
P(A)=\frac{\text { Number of times A occurred }}{\text { Number of times a trial was repeated }}
$$

Example 1: $\mathrm{P}(\mathrm{A}$ new born infant will live to see his or her first birthday in any given year and location)

Definition 2: Subjective Probability. $\mathrm{P}(\mathrm{A})$ is estimated by using previous knowledge.
Example 2: P(Candidate A wins an election)

Definition 3: Classical approach (requires equally likely outcomes). If event A can occur in s of n ways, then:

$$
P(A)=\frac{\text { Number of ways A can occur }}{\text { Number of different simple events }}
$$

Example 3: P(Getting a 4) when you roll a balanced die $=1 / 6$

Law of Large Numbers: When a procedure is repeated again and again, the relative frequency probability tends to approach the actual probability.

### 4.2 Complement of Probability

## Complement of a an event:

Notation: $\bar{A}$ or $A^{c}$
Consists of all outcomes in which event A does not occur.

Example 4: Event A is rolling a die and getting a 5
$P($ Getting a 5$)=P(A)=1 / 6$
$P($ Not Getting a 5$)=P(\bar{A})=1-1 / 6=5 / 6$

### 4.3 Compound Event

A compound event: Is any event combining two or more simple events

Example 5: Getting an even number when rolling a die $=\{2,4,6\}$
Remember a simple event is just a single event, for example $\{3\}$

### 4.4 Rules of Probability

The Rules: For any event $A$

1. $0 \leq P(A) \leq 1$
2. If $P(A)=1, A$ always occurs and $P(\bar{A})=0$
3. If $P(A)=0, A$ never occurs and $P(\bar{A})=1$
4. $P(A)+P(\bar{A})=1 \rightarrow P(\bar{A})=1-P(A)$

### 4.5 Union, Intersection, and Disjoint Events

Example 6: Say you have a die and a coin

1. Event $A=$ Getting a head when a coin is tossed
2. Event $B=$ Getting a 5 when a single die is rolled

Union of Events: The union of two sets is a new set that contains all of the elements that are in both sets.

$$
\begin{aligned}
P(A \cup B) & =P(A \text { or } B) \\
& =P(\text { Event } \mathrm{A} \text { occurs or event } \mathrm{B} \text { occurs or they both occur }) \\
& =P(\text { Getting a head or getting a } 5)
\end{aligned}
$$

Intersection OF of Events: The intersection of two sets is a new set that contains the shared elements that are in both sets.

$$
\begin{aligned}
P(A \cap B) & =P(A \text { and } B) \\
& =P(\text { Event } \mathrm{A} \text { occurs and event } \mathrm{B} \text { occurs simultaneously }) \\
& =P(\text { Getting a head and getting a } 5)
\end{aligned}
$$

Disjoint Events (or mutually exclusive): They can not occur simultaneously

### 4.6 Venn Diagram

$S$ : Sample Space
Union of $A$ or $B$ can be seen as $P(A \cup B)$


Intersection of $A$ and $B$ can seen as $P(A \cap B)$


Complement of $A, P(\bar{A})$


### 4.7 Probability Rules

Very important rule when calculating probabilities:

1. Addition Rule
2. Conditional Probability
3. Independence Events
4. Multiplication

## Addition Rule

$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
Same thing $P(A \cap B)=P(A)+P(B)-P(A \cup B)$

If the events are disjoints $P(A \cap B)=0$
In this case $P(A \cup B)=P(A)+P(B)$

## Example 7:

A die is rolled. What is the probability of getting a 1 or a $6 ? . A=\{1\} ; B=\{6\}$. $A$ and $B$ are mutually exclusive.

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =P(A)+P(B) \\
& =1 / 6+1 / 6 \\
& =1 / 3
\end{aligned}
$$

Conditional Probability: Probability of an event $B$ given $A$ occurs

$$
\begin{aligned}
P(B \mid A) & =P(\text { event } \mathrm{B} \text { occurs given (after) event } \mathrm{A} \text { has already occurred }) \\
& =P(B \text { given } A)
\end{aligned}
$$

Independence Events Two events $A$ and $B$ are independent if the occurrence of one does not affect the probability of occurrence of the other. This means $P(B \mid A)=P(B)$ (Run to venn diagrams)

Example 8: When tossing a coin twice
$P($ Head in a 2 nd $\mid$ Tail in a 1 st $)=P($ Head in the 2 nd $)=1 / 2$

Multiplication Rule Probability of an event $A$ and $B$ can be expressed as the probability of $A$ multiplied by the the probability of $B$ given $A$ this can be expressed
$P(A$ and $B)=P(A \cap B)=P(A) P(B \mid A)$

If $A$ and $B$ are independents:
$P(A \cap B)=P(A$ and $B)=P(A) P(B) \quad$ (because $P(B \mid A)=P(B))$

Example 9: $A$ coin is tossed and a die is rolled.
$P($ Getting a head and Getting a 5$)=P(\mathrm{H}$ and 5$)$

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B \mid A) \\
& =P(A) P(B) \quad A \text { and } B \text { are independent } \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{6}\right) \\
& =\frac{1}{12}
\end{aligned}
$$

